A Statement of the Fundamental Lemma
نویسنده
چکیده
These notes give a statement of the fundamental lemma, which is a conjectural identity between p-adic integrals.
منابع مشابه
A simple proof of Zariski's Lemma
Our aim in this very short note is to show that the proof of the following well-known fundamental lemma of Zariski follows from an argument similar to the proof of the fact that the rational field $mathbb{Q}$ is not a finitely generated $mathbb{Z}$-algebra.
متن کاملApplication of Hopf's lemma on contact CR-warped product submanifolds of a nearly Kenmotsu manifold
In this paper we consider contact CR-warped product submanifolds of the type $M = N_Ttimes_f N_perp$, of a nearly Kenmotsu generalized Sasakian space form $bar M(f_1, f_2, f_3)$ and by use of Hopf's Lemma we show that $M$ is simply contact CR-product under certain condition. Finally, we establish a sharp inequality for squared norm of the second fundamental form and equality case is dis...
متن کاملOn Yao's XOR-Lemma
A fundamental lemma of Yao states that computational weakunpredictability of Boolean predicates is amplified when the results of several independent instances are XOR together. We survey two known proofs of Yao’s Lemma and present a third alternative proof. The third proof proceeds by first proving that a function constructed by concatenating the values of the original function on several indep...
متن کاملInvestigating the Characteristics of Identity with an Emphasis on Imam Khomeini’s Theory in the 1988 Statement Addressed to Artists and its Impact on the Art of the Islamic Revolution
Some fundamental changes were emerged in various fields (social, political, cultural and artistic) with the presence of the Islamic Revolution and the founding guidelines of this great event of Imam Khomeini. The present study aims to identify and introduce the characteristics of the Islamic Revolution’s art identity with the theoretical studies and considering various aspects of Imam Khomeini’...
متن کاملErratum to: Atomic and molecular decompositions of anisotropic Besov spaces
We give a corrected proof of Lemma 3.1 in [1]. While the statement of [1, Lemma 3.1] is true, its proof is incorrect. The argument contains a serious defect which can not be easily corrected. The inequality that appears in [1] before (3.5) is not true. If this inequality was true, then we could conclude that, even for a non doubling measure μ, (3.5) was also true. But there exist some non doubl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003